[Search for users] [Overall Top Noters] [List of all Conferences] [Download this site]

Conference rusure::math

Title:Mathematics at DEC
Moderator:RUSURE::EDP
Created:Mon Feb 03 1986
Last Modified:Fri Jun 06 1997
Last Successful Update:Fri Jun 06 1997
Number of topics:2083
Total number of notes:14613

712.0. "Number of transitive relations on a set" by KIRK::KOLKER () Wed Jun 03 1987 21:03

    Here is a problem I have been working on for some time, but have
    not solved:
    
    Find a closed form solution for the number of transitive relations
    on a set of N elements.  This form is obviously some function of
    N.
    
    I have a closed form solution to the number of equivalence relations
    on a set of N elements, which is a count of the partions of a set
    of N elements.
    
    Any help will be gladly appreciated.
    
    R.J.Kolker
    KIRK::KOLKER
    
T.RTitleUserPersonal
Name
DateLines
712.1CHOVAX::YOUNGBack from the Shadows Again,Wed Jun 03 1987 22:357
    Sounds interesting, but some of us dinosaurs (me) have a lot of
    cobwebs in the attic.  Which is to say I don't follow your terminology
    (correct though it may be).

    So how about more detail and maybe a short example or two?
    
    --  Barry
712.2clarification for dinosaursKIRK::KOLKERThu Jun 04 1987 14:4134
    re .1
    Greetings Saurian.

    Let S be a set. A relation on S is a subset of S X S (X is cartesian
    product). A a relation r is transitive iff:
    	r(s1,s2) and r(s2,s3) imply r(s1,s3) for all s1,s2,s3 in S.
    another way of putting is r*r is contained r where * is the relation
    composition operation.  If r,s are relations on S the r*s is defined
    to be the set of pairs (i.e. a relation) (s1,s3) for which there
    exists s2 in S such that r(s1,s2) and r(s2,s3).
    
    An equivalence relation on S x S is a relation e such that:
    1. e(s,s) for all s in S    (e is reflexive)
    2. e(s1,s2) implies e(s2,s1) for s1,s2 in S (e is symmetric)
    3. e is transitive
    
    It turns out each equivalence relation on S X S corresponds in a
    1 - 1 fashion to a partitioning of S into disjoint non empty subsets.
    Thus e(x,y) iff x,y in the same subset of the partition.
    
    A binary relation can be represented by a matrix whose elements
    are 0,1 in a two element boolean algebra.  The index set of the
    matrix is S itself so if S has N elements a binary relation can
    be represented by an N x N matrix.  The multipication of such matrices
    is defined in a manner analogous to matrices defined over rings.
    Conjunction takes the place of multiplication and disjunction takes
    the place of addition.
    
    A binary matrix M represents a transitive relation iff the (s1,s2)
    element of M x M implies the corresponding element of M.
    
    Thus the problem is equivalent to counting the transitive matrices.
    
    
712.3small correction to .2KIRK::KOLKERThu Jun 04 1987 15:398
    correction to .2
    Let r,s be relations on S then the composition r*s is the relation
    v such that
    v(s1,s3) iff there exist s2 in S such that r(s1,s2) and s(s2,s3).
    
    If you are a database theorist and like relational databases you
    will recognize r*s as the natural join of r and s projected on the
    first and third domains of the join.
712.4Appreciation from extinct speciesCHOVAX::YOUNGBack from the Shadows Again,Thu Jun 04 1987 16:215
    Re .2,.3:
    
    Thanks.  Good explanation, I think it has even sunk into my hindbrain.
    
    --  Barry
712.5CLT::GILBERTeager like a childThu Jun 04 1987 17:116
    This problem sounds similar to the problem of minimal-comparison
    sorting.  See Knuth's "Art of Computer Programming", Vol.3 for
    more information.

    I suspect this problem is very difficult.  Simply determining the
    numbers for N <= 15 seems a more realistic goal.
712.6Now you know why Dinosaurs are extinctKIRK::KOLKERThu Jun 04 1987 18:366
    re .5
    
    I have computed the results for n <= 4. For n = 5 I estimated about
    20 days on a VAX 750. For n = 6, I should live so long.
    
712.7See 598CHOVAX::YOUNGBack from the Shadows Again,Thu Jun 04 1987 20:279
    I believe that this problem is isomorphic with the Push-Button
    Lock problem that I presented in 598.  We never did fully solve
    it, but Peter (how could you forget this Peter?) did give a good
    recursive formula in 598.2, and a list of the values up to n=50
    in 598.5.
    
    "Proof" available upon demand.
    
    --  Barry
712.8BEING::POSTPISCHILAlways mount a scratch monkey.Thu Jun 04 1987 21:1026
    Re .7:
    
    Solutions for two buttons:
    
    		1, 2
    		2, 1
    		1-2
    
    Transitive relations for two items:
    
    	{ }
    	{ (1,1) }
    	{ (2,2) }
    	{ (1,1), (2,2) }
    	{ (1,2) }
    	{ (1,1), (1,2) }
    	{ (2,2), (1,2) }
    	{ (1,1), (2,2), (1,2) }
    	{ (2,1) }
    	{ (1,1), (2,1) }
    	{ (2,2), (2,1) }
    	{ (1,1), (2,2), (2,1) }
    	{ (1,1), (2,2), (1,2), (2,1) }
    
    
    				-- edp
712.9KIRK::KOLKERThu Jun 04 1987 22:5013
    re .7
    the item in note 598 is the ennumeration of partitions of a 5 element
    set.
    
    ennumerating the partitions is not the problem I have posed. It
    is the ennumeration of transitive relations. There are more transitive
    relation on a set of N elements than there are partitions on a set
    of N elements because a transitive relation need not be either
    symmetric  or reflexive.
    
    Thank you for the xref.
    R.J.Kolker
    
712.10Sorry...cobwebs in the attic.CHOVAX::YOUNGBack from the Shadows Again,Fri Jun 05 1987 02:4131
    Re .8:
    
    Yes after I had thought about this for a while it became clear to
    me that I had missed something in my line of reasoning somewhere
    (ie. the "proof" I was going to offer was a crock).
    
    Re .9:
    
    I agree the 598 is not an enumeration of the transitive relations
    on a set, however neither is 598  an enumeration of the partitions
    of a set.  A partition is I believe, an unordered set of sets, that
    is the partition {{1,2,3},{4},{5,6}} is identical to
    {{5,6},{4},{1,2,3}} whereas the PBL problem deals with
    'ordered'-partitions.  In this case we would have combination 
    <{1,2,3},{4},{5,6}> which is clearly different from <{5,6},{4},{1,2,3}>
    because they are in a different order (hope I'm getting my symbology
    right).
    
    Thus we might say that the PBL problem is equivilant to the enumeration
    of the 'ordered' partitons of a set.  To translate this into
    set-relations terms, the PBL problem is equivilant to the enumeration
    of the transitive relations on a set that satisfy the following
    additional conditions:
    	1)  r is reflexive.
    	2)  For any s1,s2 in S, either r(s1,s2) or r(s2,s1).
    
    I had missed the need for these extra conditions to establish the
    isomorphism when I entered .7.
    
    
    --  Barry
712.11equivalences .=. partitionsKIRK::KOLKERFri Jun 05 1987 12:5528
    re .10
    Let S be a set and let S = union over some collection of subsets
    of S where no two distinct sets of the collection have any elements
    in common. Define an equivalence relation based on the partition
    by saying two elements of S are equivalent if both are in the same
    subset of the partition. This relation is reflexive since an element
    is in the same set as itself, it is symmetric since if s1 and s2
    are in the same member of the partition then s2 and s1 are in the
    same member of the partition. Like wise transitivity can be shown.
    
    This proves that to a partition there is a corresponding equivalence
    reltion. Now to the converse: Let e be an equivalence relation on
    S. For s in S define P(s) = set of s1 in S such that e(s,s1).
    P(s) is not empty since it contains s. ( oops I forgot to mention
    that the subsets forming a partition are non empty, sorry) To continue,
    consider P(s) and P(s1) for s,s1 in S. If P(s) intersection P(s1)
    has an element s2 in common, then by definition of P e(s,s2), e(s2,s1),
    hence by transitivity of e, e(s,s2) which implies s2 in P(s). Likewise
    s in P(s2). Use this facts to show P(s) contained in P(s1) and
    P(s1) contained in P(s). This if P(s) intersects P(s2) they are
    the same set. This shows the collection P(s) for s in S form a
    partition .
    
    To sum up to each partition an equivalence relation. To each
    equivalence relation a partition. QED.
    
    R.J.Kolker
    
712.12CLT::GILBERTBuilderTue Sep 08 1987 17:4325
    Transitive relations for three items:

				  (re)labellings	e(n,n)

	{}				1		2**3
	{(1,2)}				6		2**3
	{(1,2),(1,3)}			3		2**3
	{(1,2),(3,2)}			3		2**3
	{(1,2),(2,3),(1,3)}		6		2**3

	{(1,2),(2,1),(1,1),(2,2)}	3		2**1
	{(1,2),(2,1),(1,1),(2,2),(1,3),(2,3)}
					3		2**1
	{(1,2),(2,1),(1,1),(2,2),(3,1),(3,2)}
					3		2**1

	{(1,2),(2,1),(1,1),(2,2),(1,3),(2,3),(3,1),(3,2),(3,3)}
					1		2**0

    The columns marked "(re)labellings" and "e(n,n)" provide multipliers.
    The first is straight-forward; the second considers whether relations
    of the form (n,n) are included.

    Thus, for N=3, the number of transitive relations is:
	(1+6+3+3+6)*2**3 + (3+3+3)*2**1 + 1*2**0 = 171
712.13CLT::GILBERTBuilderTue Sep 08 1987 18:3437
    There are 3994 transitive relations for 4 items:

{ }						1	4
{ (3,0) }					12	4
{ (3,0) (3,1) }					12	4
{ (3,0) (3,1) (3,2) }				4	4
{ (2,0) (3,0) }					12	4
{ (2,0) (3,1) }					12	4
{ (2,0) (3,0) (3,1) }				24	4
{ (2,0) (3,0) (3,2) }				24	4
{ (2,0) (3,0) (3,1) (3,2) }			24	4
{ (2,0) (2,1) (3,0) (3,1) }			6	4
{ (2,0) (2,1) (3,0) (3,1) (3,2) }		12	4
{ (2,2) (2,3) (3,2) (3,3) }			6	2
{ (2,0) (2,2) (2,3) (3,0) (3,2) (3,3) }		12	2
{ (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) }	6	2
{ (1,0) (2,0) (3,0) }				4	4
{ (1,0) (2,0) (3,0) (3,1) }			24	4
{ (1,0) (2,0) (3,0) (3,1) (3,2) }		12	4
{ (1,0) (2,0) (2,1) (3,0) (3,1) }		12	4
{ (1,0) (2,0) (2,1) (3,0) (3,1) (3,2) }		24	4
{ (1,0) (2,2) (2,3) (3,2) (3,3) }		12	2
{ (1,0) (2,0) (2,2) (2,3) (3,0) (3,2) (3,3) }	12	2
{ (1,0) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) }	12	2
{ (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) }		12	2
{ (1,1) (1,2) (2,1) (2,2) (3,0) (3,1) (3,2) }	12	2
{ (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) (3,0) (3,1) (3,2) }	12	2
{ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) }	4	1
{ (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) }	4	1
{ (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) }	6	2
{ (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) (3,2) }	12	2
{ (0,0) (0,1) (1,0) (1,1) (2,2) (2,3) (3,2) (3,3) }	3	0
{ (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) }	6	0
{ (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) (3,0) (3,1) (3,2) }	4	1
{ (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) }	1	0

Total = 3994
712.14CLT::GILBERTBuilderTue Sep 08 1987 18:40143
    There are 154303 transitive relations for 5 items:

{ }						1	5
{ 40 }						20	5
{ 40 41 }					30	5
{ 40 41 42 }					20	5
{ 40 41 42 43 }					5	5
{ 30 40 }					30	5
{ 30 41 }					60	5
{ 30 40 41 }					120	5
{ 30 41 42 }					60	5
{ 30 40 41 42 }					60	5
{ 30 40 43 }					60	5
{ 30 40 41 43 }					120	5
{ 30 40 41 42 43 }				60	5
{ 30 31 40 41 }					30	5
{ 30 31 40 42 }					60	5
{ 30 31 40 41 42 }				60	5
{ 30 31 40 41 43 }				60	5
{ 30 31 40 41 42 43 }				60	5
{ 30 31 32 40 41 42 }				10	5
{ 30 31 32 40 41 42 43 }			20	5
{ 33 34 43 44 }					10	3
{ 30 33 34 40 43 44 }				30	3
{ 30 31 33 34 40 41 43 44 }			30	3
{ 30 31 32 33 34 40 41 42 43 44 }		10	3
{ 20 30 40 }					20	5
{ 20 30 41 }					60	5
{ 20 30 40 41 }					60	5
{ 20 30 40 42 }					120	5
{ 20 30 40 41 42 }				120	5
{ 20 30 40 42 43 }				60	5
{ 20 30 40 41 42 43 }				60	5
{ 20 31 40 41 }					60	5
{ 20 31 40 42 }					120	5
{ 20 31 40 41 42 }				120	5
{ 20 31 40 41 42 43 }				60	5
{ 20 30 31 40 41 }				60	5
{ 20 30 31 40 42 }				120	5
{ 20 30 31 40 41 42 }				120	5
{ 20 30 31 40 41 43 }				120	5
{ 20 30 31 40 41 42 43 }			120	5
{ 20 30 32 40 42 }				60	5
{ 20 30 32 40 41 42 }				120	5
{ 20 30 32 40 42 43 }				120	5
{ 20 30 32 40 41 42 43 }			120	5
{ 20 30 31 32 40 41 42 }			60	5
{ 20 30 31 32 40 41 42 43 }			120	5
{ 20 33 34 43 44 }				60	3
{ 20 30 33 34 40 43 44 }			60	3
{ 20 31 33 34 41 43 44 }			60	3
{ 20 30 31 33 34 40 41 43 44 }			60	3
{ 20 30 32 33 34 40 42 43 44 }			60	3
{ 20 30 31 32 33 34 40 41 42 43 44 }		60	3
{ 20 21 30 31 40 41 }				10	5
{ 20 21 30 31 40 41 42 }			60	5
{ 20 21 30 31 40 41 42 43 }			30	5
{ 20 21 30 31 32 40 41 42 }			30	5
{ 20 21 30 31 32 40 41 42 43 }			60	5
{ 20 21 33 34 43 44 }				30	3
{ 20 21 30 33 34 40 43 44 }			60	3
{ 20 21 30 31 33 34 40 41 43 44 }		30	3
{ 20 21 30 31 32 33 34 40 41 42 43 44 }		30	3
{ 22 23 32 33 42 43 }				30	3
{ 22 23 32 33 40 42 43 }			60	3
{ 22 23 32 33 40 41 42 43 }			30	3
{ 20 22 23 30 32 33 40 42 43 }			60	3
{ 20 22 23 30 32 33 40 41 42 43 }		60	3
{ 20 21 22 23 30 31 32 33 40 41 42 43 }		30	3
{ 22 23 24 32 33 34 42 43 44 }			10	2
{ 20 22 23 24 30 32 33 34 40 42 43 44 }		20	2
{ 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44 }	10	2
{ 10 20 30 40 }					5	5
{ 10 20 30 40 41 }				60	5
{ 10 20 30 40 41 42 }				60	5
{ 10 20 30 40 41 42 43 }			20	5
{ 10 20 30 31 40 41 }				60	5
{ 10 20 30 31 40 42 }				60	5
{ 10 20 30 31 40 41 42 }			120	5
{ 10 20 30 31 40 41 43 }			120	5
{ 10 20 30 31 40 41 42 43 }			120	5
{ 10 20 30 31 32 40 41 42 }			30	5
{ 10 20 30 31 32 40 41 42 43 }			60	5
{ 10 20 33 34 43 44 }				30	3
{ 10 20 30 33 34 40 43 44 }			30	3
{ 10 20 30 31 33 34 40 41 43 44 }		60	3
{ 10 20 30 31 32 33 34 40 41 42 43 44 }		30	3
{ 10 20 21 30 31 40 41 }			20	5
{ 10 20 21 30 31 40 41 42 }			120	5
{ 10 20 21 30 31 40 41 42 43 }			60	5
{ 10 20 21 30 31 32 40 41 42 }			60	5
{ 10 20 21 30 31 32 40 41 42 43 }		120	5
{ 10 20 21 33 34 43 44 }			60	3
{ 10 20 21 30 33 34 40 43 44 }			60	3
{ 10 20 21 30 31 33 34 40 41 43 44 }		60	3
{ 10 20 21 30 31 32 33 34 40 41 42 43 44 }	60	3
{ 10 22 23 32 33 42 43 }			60	3
{ 10 22 23 32 33 40 42 43 }			60	3
{ 10 22 23 32 33 40 41 42 43 }			60	3
{ 10 20 22 23 30 32 33 40 42 43 }		60	3
{ 10 20 22 23 30 32 33 40 41 42 43 }		60	3
{ 10 20 21 22 23 30 31 32 33 40 41 42 43 }	60	3
{ 10 22 23 24 32 33 34 42 43 44 }		20	2
{ 10 20 22 23 24 30 32 33 34 40 42 43 44 }	20	2
{ 10 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44 }	20	2
{ 11 12 21 22 31 32 41 42 }			30	3
{ 11 12 21 22 31 32 40 41 42 }			60	3
{ 11 12 21 22 31 32 41 42 43 }			60	3
{ 11 12 21 22 31 32 40 41 42 43 }		60	3
{ 11 12 21 22 30 31 32 40 41 42 }		30	3
{ 11 12 21 22 30 31 32 40 41 42 43 }		60	3
{ 11 12 21 22 33 34 43 44 }			15	1
{ 11 12 21 22 30 33 34 40 43 44 }		30	1
{ 11 12 21 22 31 32 33 34 41 42 43 44 }		30	1
{ 11 12 21 22 30 31 32 33 34 40 41 42 43 44 }	30	1
{ 10 11 12 20 21 22 30 31 32 40 41 42 }		30	3
{ 10 11 12 20 21 22 30 31 32 40 41 42 43 }	60	3
{ 10 11 12 20 21 22 30 33 34 40 43 44 }		15	1
{ 10 11 12 20 21 22 30 31 32 33 34 40 41 42 43 44 }	30	1
{ 11 12 13 21 22 23 31 32 33 41 42 43 }		20	2
{ 11 12 13 21 22 23 31 32 33 40 41 42 43 }	20	2
{ 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43 }	20	2
{ 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 }	5	1
{ 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44 }	5	1
{ 00 01 10 11 20 21 30 31 40 41 }		10	3
{ 00 01 10 11 20 21 30 31 40 41 42 }		60	3
{ 00 01 10 11 20 21 30 31 40 41 42 43 }		30	3
{ 00 01 10 11 20 21 30 31 32 40 41 42 }		30	3
{ 00 01 10 11 20 21 30 31 32 40 41 42 43 }	60	3
{ 00 01 10 11 20 21 33 34 43 44 }		30	1
{ 00 01 10 11 20 21 30 31 33 34 40 41 43 44 }	30	1
{ 00 01 10 11 20 21 30 31 32 33 34 40 41 42 43 44 }	30	1
{ 00 01 10 11 22 23 32 33 40 41 42 43 }		15	1
{ 00 01 10 11 20 21 22 23 30 31 32 33 40 41 42 43 }	30	1
{ 00 01 10 11 22 23 24 32 33 34 42 43 44 }	10	0
{ 00 01 10 11 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44 }	10	0
{ 00 01 02 10 11 12 20 21 22 30 31 32 40 41 42 }	10	2
{ 00 01 02 10 11 12 20 21 22 30 31 32 40 41 42 43 }	20	2
{ 00 01 02 10 11 12 20 21 22 30 31 32 33 34 40 41 42 43 44 }	10	0
{ 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43 }	5	1
{ 00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44 }	1	0

Total = 154303
712.15CLT::GILBERTBuilderTue Sep 08 1987 21:181
    There are 9415189 transitive relations for 6 items.
712.16BEING::POSTPISCHILAlways mount a scratch monkey.Tue Sep 08 1987 23:194
    There is no unused CPU time on the CLT cluster.
    
    
    				-- edp
712.17Re.15: Wheres the list? :-)CHOVAX::YOUNGBack from the Shadows Again,Wed Sep 09 1987 03:171
    
712.18CLT::GILBERTBuilderWed Sep 09 1987 13:52724
    Here's the list for N=6.  The notation [xy..z] means that x, y, ... z
    form an equivalence class -- for example, [345] means that the pairs
    33, 34, 35, 43, 44, 45, 53, 54, and 55 are all in the relation.

    There are 9415189 transitive relations for 6 items.

{ }								   1	6
{ 50 }								  30	6
{ 50 51 }							  60	6
{ 50 51 52 }							  60	6
{ 50 51 52 53 }							  30	6
{ 50 51 52 53 54 }						   6	6
{ 40 50 }							  60	6
{ 40 51 }							 180	6
{ 40 50 51 }							 360	6
{ 40 51 52 }							 360	6
{ 40 50 51 52 }							 360	6
{ 40 51 52 53 }							 120	6
{ 40 50 51 52 53 }						 120	6
{ 40 50 54 }							 120	6
{ 40 50 51 54 }							 360	6
{ 40 50 51 52 54 }						 360	6
{ 40 50 51 52 53 54 }						 120	6
{ 40 41 50 51 }							  90	6
{ 40 41 50 52 }							 360	6
{ 40 41 50 51 52 }						 360	6
{ 40 41 52 53 }							  90	6
{ 40 41 50 52 53 }						 360	6
{ 40 41 50 51 52 53 }						 180	6
{ 40 41 50 51 54 }						 180	6
{ 40 41 50 51 52 54 }						 360	6
{ 40 41 50 51 52 53 54 }					 180	6
{ 40 41 42 50 51 52 }						  60	6
{ 40 41 42 50 51 53 }						 180	6
{ 40 41 42 50 51 52 53 }					 120	6
{ 40 41 42 50 51 52 54 }					 120	6
{ 40 41 42 50 51 52 53 54 }					 120	6
{ 40 41 42 43 50 51 52 53 }					  15	6
{ 40 41 42 43 50 51 52 53 54 }					  30	6
{ [45] }							  15	4
{ [45] 40 }							  60	4
{ [45] 40 41 }							  90	4
{ [45] 40 41 42 }						  60	4
{ [45] 40 41 42 43 }						  15	4
{ 30 40 50 }							  60	6
{ 30 40 51 }							 360	6
{ 30 40 50 51 }							 360	6
{ 30 40 51 52 }							 180	6
{ 30 40 50 51 52 }						 180	6
{ 30 40 50 53 }							 360	6
{ 30 40 50 51 53 }						 720	6
{ 30 40 50 51 52 53 }						 360	6
{ 30 40 50 53 54 }						 180	6
{ 30 40 50 51 53 54 }						 360	6
{ 30 40 50 51 52 53 54 }					 180	6
{ 30 41 50 51 }							 360	6
{ 30 41 52 }							 120	6
{ 30 41 50 52 }							 720	6
{ 30 41 50 51 52 }						 360	6
{ 30 41 50 53 }							 720	6
{ 30 41 50 51 53 }						 720	6
{ 30 41 50 52 53 }						 720	6
{ 30 41 50 51 52 53 }						 720	6
{ 30 41 50 51 53 54 }						 360	6
{ 30 41 50 51 52 53 54 }					 360	6
{ 30 40 41 50 51 }						 360	6
{ 30 40 41 50 52 }						 360	6
{ 30 40 41 51 52 }						 720	6
{ 30 40 41 50 51 52 }						 720	6
{ 30 40 41 50 53 }						 720	6
{ 30 40 41 50 51 53 }						 720	6
{ 30 40 41 50 52 53 }						 720	6
{ 30 40 41 50 51 52 53 }					 720	6
{ 30 40 41 50 51 54 }						 720	6
{ 30 40 41 50 51 52 54 }					 720	6
{ 30 40 41 50 51 53 54 }					 720	6
{ 30 40 41 50 51 52 53 54 }					 720	6
{ 30 41 42 51 52 }						 180	6
{ 30 41 42 50 51 52 }						 360	6
{ 30 41 42 50 53 }						 360	6
{ 30 41 42 50 51 53 }						 720	6
{ 30 41 42 50 51 52 53 }					 360	6
{ 30 41 42 51 52 54 }						 360	6
{ 30 41 42 50 51 52 54 }					 360	6
{ 30 41 42 50 51 52 53 54 }					 360	6
{ 30 40 41 42 50 51 52 }					 180	6
{ 30 40 41 42 50 53 }						 360	6
{ 30 40 41 42 50 51 53 }					 720	6
{ 30 40 41 42 50 51 52 53 }					 360	6
{ 30 40 41 42 50 51 52 54 }					 360	6
{ 30 40 41 42 50 51 52 53 54 }					 360	6
{ 30 40 43 50 53 }						 180	6
{ 30 40 43 50 51 53 }						 720	6
{ 30 40 43 50 51 52 53 }					 360	6
{ 30 40 43 50 53 54 }						 360	6
{ 30 40 43 50 51 53 54 }					 720	6
{ 30 40 43 50 51 52 53 54 }					 360	6
{ 30 40 41 43 50 51 53 }					 360	6
{ 30 40 41 43 50 52 53 }					 360	6
{ 30 40 41 43 50 51 52 53 }					 720	6
{ 30 40 41 43 50 51 53 54 }					 720	6
{ 30 40 41 43 50 51 52 53 54 }					 720	6
{ 30 40 41 42 43 50 51 52 53 }					 180	6
{ 30 40 41 42 43 50 51 52 53 54 }				 360	6
{ [45] 30 }							 180	4
{ [45] 30 40 }							 180	4
{ [45] 30 41 }							 360	4
{ [45] 30 40 41 }						 360	4
{ [45] 30 41 42 }						 180	4
{ [45] 30 40 41 42 }						 180	4
{ [45] 30 40 43 }						 180	4
{ [45] 30 40 41 43 }						 360	4
{ [45] 30 40 41 42 43 }						 180	4
{ 30 31 40 41 50 51 }						  60	6
{ 30 31 40 41 50 52 }						 360	6
{ 30 31 40 41 50 51 52 }					 180	6
{ 30 31 40 41 50 51 53 }					 360	6
{ 30 31 40 41 50 51 52 53 }					 360	6
{ 30 31 40 41 50 51 53 54 }					 180	6
{ 30 31 40 41 50 51 52 53 54 }					 180	6
{ 30 31 40 42 51 52 }						 120	6
{ 30 31 40 42 50 51 52 }					 360	6
{ 30 31 40 42 50 51 53 }					 720	6
{ 30 31 40 42 50 51 52 53 }					 720	6
{ 30 31 40 42 50 51 52 53 54 }					 360	6
{ 30 31 40 41 42 50 51 52 }					 180	6
{ 30 31 40 41 42 50 51 53 }					 360	6
{ 30 31 40 41 42 50 51 52 53 }					 360	6
{ 30 31 40 41 42 50 51 52 54 }					 360	6
{ 30 31 40 41 42 50 51 52 53 54 }				 360	6
{ 30 31 40 41 43 50 51 53 }					 180	6
{ 30 31 40 41 43 50 51 52 53 }					 360	6
{ 30 31 40 41 43 50 51 53 54 }					 360	6
{ 30 31 40 41 43 50 51 52 53 54 }				 360	6
{ 30 31 40 41 42 43 50 51 52 53 }				 180	6
{ 30 31 40 41 42 43 50 51 52 53 54 }				 360	6
{ [45] 30 31 }							 180	4
{ [45] 30 31 40 }						 360	4
{ [45] 30 31 40 41 }						 180	4
{ [45] 30 31 42 }						 180	4
{ [45] 30 31 40 42 }						 360	4
{ [45] 30 31 40 41 42 }						 180	4
{ [45] 30 31 40 41 43 }						 180	4
{ [45] 30 31 40 41 42 43 }					 180	4
{ 30 31 32 40 41 42 50 51 52 }					  20	6
{ 30 31 32 40 41 42 50 51 52 53 }				 120	6
{ 30 31 32 40 41 42 50 51 52 53 54 }				  60	6
{ 30 31 32 40 41 42 43 50 51 52 53 }				  60	6
{ 30 31 32 40 41 42 43 50 51 52 53 54 }				 120	6
{ [45] 30 31 32 }						  60	4
{ [45] 30 31 32 40 }						 180	4
{ [45] 30 31 32 40 41 }						 180	4
{ [45] 30 31 32 40 41 42 }					  60	4
{ [45] 30 31 32 40 41 42 43 }					  60	4
{ [34] 53 }							  60	4
{ [34] 50 53 }							 180	4
{ [34] 50 51 53 }						 180	4
{ [34] 50 51 52 53 }						  60	4
{ [34] 30 50 53 }						 180	4
{ [34] 30 50 51 53 }						 360	4
{ [34] 30 50 51 52 53 }						 180	4
{ [34] 30 31 50 51 53 }						 180	4
{ [34] 30 31 50 51 52 53 }					 180	4
{ [34] 30 31 32 50 51 52 53 }					  60	4
{ [345] }							  20	3
{ [345] 30 }							  60	3
{ [345] 30 31 }							  60	3
{ [345] 30 31 32 }						  20	3
{ 20 30 40 50 }							  30	6
{ 20 30 40 51 }							 120	6
{ 20 30 40 50 51 }						 120	6
{ 20 30 40 50 52 }						 360	6
{ 20 30 40 50 51 52 }						 360	6
{ 20 30 40 50 52 53 }						 360	6
{ 20 30 40 50 51 52 53 }					 360	6
{ 20 30 40 50 52 53 54 }					 120	6
{ 20 30 40 50 51 52 53 54 }					 120	6
{ 20 30 41 51 }							  90	6
{ 20 30 41 50 51 }						 360	6
{ 20 30 41 50 52 }						 720	6
{ 20 30 41 50 51 52 }						 720	6
{ 20 30 41 50 52 53 }						 360	6
{ 20 30 41 50 51 52 53 }					 360	6
{ 20 30 41 51 54 }						 360	6
{ 20 30 41 50 51 54 }						 360	6
{ 20 30 41 50 51 52 54 }					 720	6
{ 20 30 41 50 51 52 53 54 }					 360	6
{ 20 30 40 41 50 51 }						 180	6
{ 20 30 40 41 50 52 }						 720	6
{ 20 30 40 41 50 51 52 }					 720	6
{ 20 30 40 41 50 52 53 }					 360	6
{ 20 30 40 41 50 51 52 53 }					 360	6
{ 20 30 40 41 50 51 54 }					 360	6
{ 20 30 40 41 50 51 52 54 }					 720	6
{ 20 30 40 41 50 51 52 53 54 }					 360	6
{ 20 30 40 42 50 52 }						 360	6
{ 20 30 40 42 50 51 52 }					 720	6
{ 20 30 40 42 50 53 }						 360	6
{ 20 30 40 42 50 51 53 }					 720	6
{ 20 30 40 42 50 52 53 }					 720	6
{ 20 30 40 42 50 51 52 53 }					 720	6
{ 20 30 40 42 50 52 54 }					 720	6
{ 20 30 40 42 50 51 52 54 }					 720	6
{ 20 30 40 42 50 52 53 54 }					 720	6
{ 20 30 40 42 50 51 52 53 54 }					 720	6
{ 20 30 40 41 42 50 51 52 }					 360	6
{ 20 30 40 41 42 50 51 53 }					 360	6
{ 20 30 40 41 42 50 52 53 }					 720	6
{ 20 30 40 41 42 50 51 52 53 }					 720	6
{ 20 30 40 41 42 50 51 52 54 }					 720	6
{ 20 30 40 41 42 50 51 52 53 54 }				 720	6
{ 20 30 40 42 43 50 52 53 }					 180	6
{ 20 30 40 42 43 50 51 52 53 }					 360	6
{ 20 30 40 42 43 50 52 53 54 }					 360	6
{ 20 30 40 42 43 50 51 52 53 54 }				 360	6
{ 20 30 40 41 42 43 50 51 52 53 }				 180	6
{ 20 30 40 41 42 43 50 51 52 53 54 }				 360	6
{ [45] 20 30 }							 180	4
{ [45] 20 30 40 }						 180	4
{ [45] 20 30 41 }						 180	4
{ [45] 20 30 40 41 }						 180	4
{ [45] 20 30 40 42 }						 360	4
{ [45] 20 30 40 41 42 }						 360	4
{ [45] 20 30 40 42 43 }						 180	4
{ [45] 20 30 40 41 42 43 }					 180	4
{ 20 31 40 41 50 51 }						 180	6
{ 20 31 40 41 50 52 }						 720	6
{ 20 31 40 41 50 51 52 }					 720	6
{ 20 31 40 41 50 51 52 53 }					 360	6
{ 20 31 40 41 50 51 54 }					 360	6
{ 20 31 40 41 50 51 52 54 }					 720	6
{ 20 31 40 41 50 51 52 53 54 }					 360	6
{ 20 31 40 42 50 52 }						 360	6
{ 20 31 40 42 50 51 52 }					 720	6
{ 20 31 40 42 51 53 }						 360	6
{ 20 31 40 42 50 51 53 }					 720	6
{ 20 31 40 42 50 51 52 53 }					 720	6
{ 20 31 40 42 50 52 54 }					 720	6
{ 20 31 40 42 50 51 52 54 }					 720	6
{ 20 31 40 42 50 51 52 53 54 }					 720	6
{ 20 31 40 41 42 50 51 52 }					 360	6
{ 20 31 40 41 42 50 51 53 }					 360	6
{ 20 31 40 41 42 50 51 52 53 }					 720	6
{ 20 31 40 41 42 50 51 52 54 }					 720	6
{ 20 31 40 41 42 50 51 52 53 54 }				 720	6
{ 20 31 40 41 42 43 50 51 52 53 }				 180	6
{ 20 31 40 41 42 43 50 51 52 53 54 }				 360	6
{ [45] 20 31 }							 180	4
{ [45] 20 31 40 }						 360	4
{ [45] 20 31 40 41 }						 180	4
{ [45] 20 31 40 42 }						 360	4
{ [45] 20 31 40 41 42 }						 360	4
{ [45] 20 31 40 41 42 43 }					 180	4
{ 20 30 31 40 41 50 51 }					 120	6
{ 20 30 31 40 41 50 52 }					 360	6
{ 20 30 31 40 41 50 51 52 }					 360	6
{ 20 30 31 40 41 50 51 53 }					 720	6
{ 20 30 31 40 41 50 51 52 53 }					 720	6
{ 20 30 31 40 41 50 51 53 54 }					 360	6
{ 20 30 31 40 41 50 51 52 53 54 }				 360	6
{ 20 30 31 40 42 50 52 }					 360	6
{ 20 30 31 40 42 50 51 52 }					 720	6
{ 20 30 31 40 42 50 51 53 }					 720	6
{ 20 30 31 40 42 50 51 52 53 }					 720	6
{ 20 30 31 40 42 50 52 54 }					 720	6
{ 20 30 31 40 42 50 51 52 54 }					 720	6
{ 20 30 31 40 42 50 51 52 53 54 }				 720	6
{ 20 30 31 40 41 42 50 51 52 }					 360	6
{ 20 30 31 40 41 42 50 51 53 }					 720	6
{ 20 30 31 40 41 42 50 51 52 53 }				 720	6
{ 20 30 31 40 41 42 50 51 52 54 }				 720	6
{ 20 30 31 40 41 42 50 51 52 53 54 }				 720	6
{ 20 30 31 40 41 43 50 51 53 }					 360	6
{ 20 30 31 40 41 43 50 51 52 53 }				 720	6
{ 20 30 31 40 41 43 50 51 53 54 }				 720	6
{ 20 30 31 40 41 43 50 51 52 53 54 }				 720	6
{ 20 30 31 40 41 42 43 50 51 52 53 }				 360	6
{ 20 30 31 40 41 42 43 50 51 52 53 54 }				 720	6
{ [45] 20 30 31 }						 360	4
{ [45] 20 30 31 40 }						 360	4
{ [45] 20 30 31 41 }						 360	4
{ [45] 20 30 31 40 41 }						 360	4
{ [45] 20 30 31 40 42 }						 360	4
{ [45] 20 30 31 40 41 42 }					 360	4
{ [45] 20 30 31 40 41 43 }					 360	4
{ [45] 20 30 31 40 41 42 43 }					 360	4
{ 20 30 32 40 42 50 52 }					 120	6
{ 20 30 32 40 42 50 51 52 }					 360	6
{ 20 30 32 40 42 50 52 53 }					 720	6
{ 20 30 32 40 42 50 51 52 53 }					 720	6
{ 20 30 32 40 42 50 52 53 54 }					 360	6
{ 20 30 32 40 42 50 51 52 53 54 }				 360	6
{ 20 30 32 40 41 42 50 51 52 }					 360	6
{ 20 30 32 40 41 42 50 52 53 }					 720	6
{ 20 30 32 40 41 42 50 51 52 53 }				 720	6
{ 20 30 32 40 41 42 50 51 52 54 }				 720	6
{ 20 30 32 40 41 42 50 51 52 53 54 }				 720	6
{ 20 30 32 40 42 43 50 52 53 }					 360	6
{ 20 30 32 40 42 43 50 51 52 53 }				 720	6
{ 20 30 32 40 42 43 50 52 53 54 }				 720	6
{ 20 30 32 40 42 43 50 51 52 53 54 }				 720	6
{ 20 30 32 40 41 42 43 50 51 52 53 }				 360	6
{ 20 30 32 40 41 42 43 50 51 52 53 54 }				 720	6
{ [45] 20 30 32 }						 360	4
{ [45] 20 30 32 40 }						 360	4
{ [45] 20 30 32 41 }						 360	4
{ [45] 20 30 32 40 41 }						 360	4
{ [45] 20 30 32 40 42 }						 360	4
{ [45] 20 30 32 40 41 42 }					 360	4
{ [45] 20 30 32 40 42 43 }					 360	4
{ [45] 20 30 32 40 41 42 43 }					 360	4
{ 20 30 31 32 40 41 42 50 51 52 }				 120	6
{ 20 30 31 32 40 41 42 50 51 52 53 }				 720	6
{ 20 30 31 32 40 41 42 50 51 52 53 54 }				 360	6
{ 20 30 31 32 40 41 42 43 50 51 52 53 }				 360	6
{ 20 30 31 32 40 41 42 43 50 51 52 53 54 }			 720	6
{ [45] 20 30 31 32 }						 360	4
{ [45] 20 30 31 32 40 }						 360	4
{ [45] 20 30 31 32 41 }						 360	4
{ [45] 20 30 31 32 40 41 }					 360	4
{ [45] 20 30 31 32 40 42 }					 360	4
{ [45] 20 30 31 32 40 41 42 }					 360	4
{ [45] 20 30 31 32 40 41 42 43 }				 360	4
{ [34] 20 53 }							 360	4
{ [34] 20 50 53 }						 360	4
{ [34] 20 51 53 }						 360	4
{ [34] 20 50 51 53 }						 360	4
{ [34] 20 50 52 53 }						 360	4
{ [34] 20 50 51 52 53 }						 360	4
{ [34] 20 30 50 53 }						 360	4
{ [34] 20 30 50 51 53 }						 360	4
{ [34] 20 30 50 52 53 }						 360	4
{ [34] 20 30 50 51 52 53 }					 360	4
{ [34] 20 31 51 53 }						 360	4
{ [34] 20 31 50 51 53 }						 360	4
{ [34] 20 31 50 51 52 53 }					 360	4
{ [34] 20 30 31 50 51 53 }					 360	4
{ [34] 20 30 31 50 51 52 53 }					 360	4
{ [34] 20 30 32 50 52 53 }					 360	4
{ [34] 20 30 32 50 51 52 53 }					 360	4
{ [34] 20 30 31 32 50 51 52 53 }				 360	4
{ [345] 20 }							 120	3
{ [345] 20 30 }							 120	3
{ [345] 20 31 }							 120	3
{ [345] 20 30 31 }						 120	3
{ [345] 20 30 32 }						 120	3
{ [345] 20 30 31 32 }						 120	3
{ 20 21 30 31 40 41 50 51 }					  15	6
{ 20 21 30 31 40 41 50 51 52 }					 180	6
{ 20 21 30 31 40 41 50 51 52 53 }				 180	6
{ 20 21 30 31 40 41 50 51 52 53 54 }				  60	6
{ 20 21 30 31 40 41 42 50 51 52 }				 180	6
{ 20 21 30 31 40 41 42 50 51 53 }				 180	6
{ 20 21 30 31 40 41 42 50 51 52 53 }				 360	6
{ 20 21 30 31 40 41 42 50 51 52 54 }				 360	6
{ 20 21 30 31 40 41 42 50 51 52 53 54 }				 360	6
{ 20 21 30 31 40 41 42 43 50 51 52 53 }				  90	6
{ 20 21 30 31 40 41 42 43 50 51 52 53 54 }			 180	6
{ [45] 20 21 30 31 }						  90	4
{ [45] 20 21 30 31 40 }						 180	4
{ [45] 20 21 30 31 40 41 }					  90	4
{ [45] 20 21 30 31 40 41 42 }					 180	4
{ [45] 20 21 30 31 40 41 42 43 }				  90	4
{ 20 21 30 31 32 40 41 42 50 51 52 }				  60	6
{ 20 21 30 31 32 40 41 42 50 51 52 53 }				 360	6
{ 20 21 30 31 32 40 41 42 50 51 52 53 54 }			 180	6
{ 20 21 30 31 32 40 41 42 43 50 51 52 53 }			 180	6
{ 20 21 30 31 32 40 41 42 43 50 51 52 53 54 }			 360	6
{ [45] 20 21 30 31 32 }						 180	4
{ [45] 20 21 30 31 32 40 }					 360	4
{ [45] 20 21 30 31 32 40 41 }					 180	4
{ [45] 20 21 30 31 32 40 41 42 }				 180	4
{ [45] 20 21 30 31 32 40 41 42 43 }				 180	4
{ [34] 20 21 53 }						 180	4
{ [34] 20 21 50 53 }						 360	4
{ [34] 20 21 50 51 53 }						 180	4
{ [34] 20 21 50 51 52 53 }					 180	4
{ [34] 20 21 30 50 53 }						 360	4
{ [34] 20 21 30 50 51 53 }					 360	4
{ [34] 20 21 30 50 51 52 53 }					 360	4
{ [34] 20 21 30 31 50 51 53 }					 180	4
{ [34] 20 21 30 31 50 51 52 53 }				 180	4
{ [34] 20 21 30 31 32 50 51 52 53 }				 180	4
{ [345] 20 21 }							  60	3
{ [345] 20 21 30 }						 120	3
{ [345] 20 21 30 31 }						  60	3
{ [345] 20 21 30 31 32 }					  60	3
{ [23] 42 52 }							  90	4
{ [23] 42 50 52 }						 360	4
{ [23] 42 50 51 52 }						 180	4
{ [23] 42 52 54 }						 180	4
{ [23] 42 50 52 54 }						 360	4
{ [23] 42 50 51 52 54 }						 180	4
{ [23] 40 42 50 52 }						 180	4
{ [23] 40 42 51 52 }						 180	4
{ [23] 40 42 50 51 52 }						 360	4
{ [23] 40 42 50 52 54 }						 360	4
{ [23] 40 42 50 51 52 54 }					 360	4
{ [23] 40 41 42 50 51 52 }					  90	4
{ [23] 40 41 42 50 51 52 54 }					 180	4
{ [23] [45] }							  45	2
{ [23] [45] 40 }						 180	2
{ [23] [45] 40 41 }						  90	2
{ [23] [45] 42 }						  90	2
{ [23] [45] 40 42 }						 180	2
{ [23] [45] 40 41 42 }						  90	2
{ [23] 20 40 42 50 52 }						 180	4
{ [23] 20 40 42 50 51 52 }					 360	4
{ [23] 20 40 42 50 52 54 }					 360	4
{ [23] 20 40 42 50 51 52 54 }					 360	4
{ [23] 20 40 41 42 50 51 52 }					 180	4
{ [23] 20 40 41 42 50 51 52 54 }				 360	4
{ [23] [45] 20 40 }						  90	2
{ [23] [45] 20 41 }						  90	2
{ [23] [45] 20 40 41 }						 180	2
{ [23] [45] 20 40 42 }						 180	2
{ [23] [45] 20 40 41 42 }					 180	2
{ [23] 20 21 40 41 42 50 51 52 }				  90	4
{ [23] 20 21 40 41 42 50 51 52 54 }				 180	4
{ [23] [45] 20 21 40 41 }					  45	2
{ [23] [45] 20 21 40 41 42 }					  90	2
{ [234] 52 }							  60	3
{ [234] 50 52 }							 120	3
{ [234] 50 51 52 }						  60	3
{ [234] 20 50 52 }						 120	3
{ [234] 20 50 51 52 }						 120	3
{ [234] 20 21 50 51 52 }					  60	3
{ [2345] }							  15	2
{ [2345] 20 }							  30	2
{ [2345] 20 21 }						  15	2
{ 10 20 30 40 50 }						   6	6
{ 10 20 30 40 50 51 }						 120	6
{ 10 20 30 40 50 51 52 }					 180	6
{ 10 20 30 40 50 51 52 53 }					 120	6
{ 10 20 30 40 50 51 52 53 54 }					  30	6
{ 10 20 30 40 41 50 51 }					 180	6
{ 10 20 30 40 41 50 52 }					 360	6
{ 10 20 30 40 41 50 51 52 }					 720	6
{ 10 20 30 40 41 50 52 53 }					 360	6
{ 10 20 30 40 41 50 51 52 53 }					 360	6
{ 10 20 30 40 41 50 51 54 }					 360	6
{ 10 20 30 40 41 50 51 52 54 }					 720	6
{ 10 20 30 40 41 50 51 52 53 54 }				 360	6
{ 10 20 30 40 41 42 50 51 52 }					 180	6
{ 10 20 30 40 41 42 50 51 53 }					 360	6
{ 10 20 30 40 41 42 50 51 52 53 }				 360	6
{ 10 20 30 40 41 42 50 51 52 54 }				 360	6
{ 10 20 30 40 41 42 50 51 52 53 54 }				 360	6
{ 10 20 30 40 41 42 43 50 51 52 53 }				  60	6
{ 10 20 30 40 41 42 43 50 51 52 53 54 }				 120	6
{ [45] 10 20 30 }						  60	4
{ [45] 10 20 30 40 }						  60	4
{ [45] 10 20 30 40 41 }						 180	4
{ [45] 10 20 30 40 41 42 }					 180	4
{ [45] 10 20 30 40 41 42 43 }					  60	4
{ 10 20 30 31 40 41 50 51 }					 120	6
{ 10 20 30 31 40 41 50 52 }					 360	6
{ 10 20 30 31 40 41 50 51 52 }					 360	6
{ 10 20 30 31 40 41 50 51 53 }					 720	6
{ 10 20 30 31 40 41 50 51 52 53 }				 720	6
{ 10 20 30 31 40 41 50 51 53 54 }				 360	6
{ 10 20 30 31 40 41 50 51 52 53 54 }				 360	6
{ 10 20 30 31 40 42 50 51 52 }					 360	6
{ 10 20 30 31 40 42 50 51 53 }					 720	6
{ 10 20 30 31 40 42 50 51 52 53 }				 720	6
{ 10 20 30 31 40 42 50 51 52 53 54 }				 360	6
{ 10 20 30 31 40 41 42 50 51 52 }				 360	6
{ 10 20 30 31 40 41 42 50 51 53 }				 720	6
{ 10 20 30 31 40 41 42 50 51 52 53 }				 720	6
{ 10 20 30 31 40 41 42 50 51 52 54 }				 720	6
{ 10 20 30 31 40 41 42 50 51 52 53 54 }				 720	6
{ 10 20 30 31 40 41 43 50 51 53 }				 360	6
{ 10 20 30 31 40 41 43 50 51 52 53 }				 720	6
{ 10 20 30 31 40 41 43 50 51 53 54 }				 720	6
{ 10 20 30 31 40 41 43 50 51 52 53 54 }				 720	6
{ 10 20 30 31 40 41 42 43 50 51 52 53 }				 360	6
{ 10 20 30 31 40 41 42 43 50 51 52 53 54 }			 720	6
{ [45] 10 20 30 31 }						 360	4
{ [45] 10 20 30 31 40 }						 360	4
{ [45] 10 20 30 31 40 41 }					 360	4
{ [45] 10 20 30 31 40 42 }					 360	4
{ [45] 10 20 30 31 40 41 42 }					 360	4
{ [45] 10 20 30 31 40 41 43 }					 360	4
{ [45] 10 20 30 31 40 41 42 43 }				 360	4
{ 10 20 30 31 32 40 41 42 50 51 52 }				  60	6
{ 10 20 30 31 32 40 41 42 50 51 52 53 }				 360	6
{ 10 20 30 31 32 40 41 42 50 51 52 53 54 }			 180	6
{ 10 20 30 31 32 40 41 42 43 50 51 52 53 }			 180	6
{ 10 20 30 31 32 40 41 42 43 50 51 52 53 54 }			 360	6
{ [45] 10 20 30 31 32 }						 180	4
{ [45] 10 20 30 31 32 40 }					 180	4
{ [45] 10 20 30 31 32 40 41 }					 360	4
{ [45] 10 20 30 31 32 40 41 42 }				 180	4
{ [45] 10 20 30 31 32 40 41 42 43 }				 180	4
{ [34] 10 20 53 }						 180	4
{ [34] 10 20 50 53 }						 180	4
{ [34] 10 20 50 51 53 }						 360	4
{ [34] 10 20 50 51 52 53 }					 180	4
{ [34] 10 20 30 50 53 }						 180	4
{ [34] 10 20 30 50 51 53 }					 360	4
{ [34] 10 20 30 50 51 52 53 }					 180	4
{ [34] 10 20 30 31 50 51 53 }					 360	4
{ [34] 10 20 30 31 50 51 52 53 }				 360	4
{ [34] 10 20 30 31 32 50 51 52 53 }				 180	4
{ [345] 10 20 }							  60	3
{ [345] 10 20 30 }						  60	3
{ [345] 10 20 30 31 }						 120	3
{ [345] 10 20 30 31 32 }					  60	3
{ 10 20 21 30 31 40 41 50 51 }					  30	6
{ 10 20 21 30 31 40 41 50 51 52 }				 360	6
{ 10 20 21 30 31 40 41 50 51 52 53 }				 360	6
{ 10 20 21 30 31 40 41 50 51 52 53 54 }				 120	6
{ 10 20 21 30 31 40 41 42 50 51 52 }				 360	6
{ 10 20 21 30 31 40 41 42 50 51 53 }				 360	6
{ 10 20 21 30 31 40 41 42 50 51 52 53 }				 720	6
{ 10 20 21 30 31 40 41 42 50 51 52 54 }				 720	6
{ 10 20 21 30 31 40 41 42 50 51 52 53 54 }			 720	6
{ 10 20 21 30 31 40 41 42 43 50 51 52 53 }			 180	6
{ 10 20 21 30 31 40 41 42 43 50 51 52 53 54 }			 360	6
{ [45] 10 20 21 30 31 }						 180	4
{ [45] 10 20 21 30 31 40 }					 180	4
{ [45] 10 20 21 30 31 40 41 }					 180	4
{ [45] 10 20 21 30 31 40 41 42 }				 360	4
{ [45] 10 20 21 30 31 40 41 42 43 }				 180	4
{ 10 20 21 30 31 32 40 41 42 50 51 52 }				 120	6
{ 10 20 21 30 31 32 40 41 42 50 51 52 53 }			 720	6
{ 10 20 21 30 31 32 40 41 42 50 51 52 53 54 }			 360	6
{ 10 20 21 30 31 32 40 41 42 43 50 51 52 53 }			 360	6
{ 10 20 21 30 31 32 40 41 42 43 50 51 52 53 54 }		 720	6
{ [45] 10 20 21 30 31 32 }					 360	4
{ [45] 10 20 21 30 31 32 40 }					 360	4
{ [45] 10 20 21 30 31 32 40 41 }				 360	4
{ [45] 10 20 21 30 31 32 40 41 42 }				 360	4
{ [45] 10 20 21 30 31 32 40 41 42 43 }				 360	4
{ [34] 10 20 21 53 }						 360	4
{ [34] 10 20 21 50 53 }						 360	4
{ [34] 10 20 21 50 51 53 }					 360	4
{ [34] 10 20 21 50 51 52 53 }					 360	4
{ [34] 10 20 21 30 50 53 }					 360	4
{ [34] 10 20 21 30 50 51 53 }					 360	4
{ [34] 10 20 21 30 50 51 52 53 }				 360	4
{ [34] 10 20 21 30 31 50 51 53 }				 360	4
{ [34] 10 20 21 30 31 50 51 52 53 }				 360	4
{ [34] 10 20 21 30 31 32 50 51 52 53 }				 360	4
{ [345] 10 20 21 }						 120	3
{ [345] 10 20 21 30 }						 120	3
{ [345] 10 20 21 30 31 }					 120	3
{ [345] 10 20 21 30 31 32 }					 120	3
{ [23] 10 42 52 }						 180	4
{ [23] 10 42 50 52 }						 360	4
{ [23] 10 42 50 51 52 }						 360	4
{ [23] 10 42 52 54 }						 360	4
{ [23] 10 42 50 52 54 }						 360	4
{ [23] 10 42 50 51 52 54 }					 360	4
{ [23] 10 40 42 50 52 }						 180	4
{ [23] 10 40 42 50 51 52 }					 360	4
{ [23] 10 40 42 50 52 54 }					 360	4
{ [23] 10 40 42 50 51 52 54 }					 360	4
{ [23] 10 40 41 42 50 51 52 }					 180	4
{ [23] 10 40 41 42 50 51 52 54 }				 360	4
{ [23] [45] 10 }						  90	2
{ [23] [45] 10 40 }						 180	2
{ [23] [45] 10 40 41 }						 180	2
{ [23] [45] 10 42 }						 180	2
{ [23] [45] 10 40 42 }						 180	2
{ [23] [45] 10 40 41 42 }					 180	2
{ [23] 10 20 40 42 50 52 }					 180	4
{ [23] 10 20 40 42 50 51 52 }					 360	4
{ [23] 10 20 40 42 50 52 54 }					 360	4
{ [23] 10 20 40 42 50 51 52 54 }				 360	4
{ [23] 10 20 40 41 42 50 51 52 }				 180	4
{ [23] 10 20 40 41 42 50 51 52 54 }				 360	4
{ [23] [45] 10 20 40 }						  90	2
{ [23] [45] 10 20 40 41 }					 180	2
{ [23] [45] 10 20 40 42 }					 180	2
{ [23] [45] 10 20 40 41 42 }					 180	2
{ [23] 10 20 21 40 41 42 50 51 52 }				 180	4
{ [23] 10 20 21 40 41 42 50 51 52 54 }				 360	4
{ [23] [45] 10 20 21 40 41 }					  90	2
{ [23] [45] 10 20 21 40 41 42 }					 180	2
{ [234] 10 52 }							 120	3
{ [234] 10 50 52 }						 120	3
{ [234] 10 50 51 52 }						 120	3
{ [234] 10 20 50 52 }						 120	3
{ [234] 10 20 50 51 52 }					 120	3
{ [234] 10 20 21 50 51 52 }					 120	3
{ [2345] 10 }							  30	2
{ [2345] 10 20 }						  30	2
{ [2345] 10 20 21 }						  30	2
{ [12] 31 41 51 }						  60	4
{ [12] 31 41 50 51 }						 180	4
{ [12] 31 41 51 53 }						 360	4
{ [12] 31 41 50 51 53 }						 360	4
{ [12] 31 41 51 53 54 }						 180	4
{ [12] 31 41 50 51 53 54 }					 180	4
{ [12] 31 40 41 50 51 }						 180	4
{ [12] 31 40 41 51 53 }						 360	4
{ [12] 31 40 41 50 51 53 }					 360	4
{ [12] 31 40 41 50 51 54 }					 360	4
{ [12] 31 40 41 50 51 53 54 }					 360	4
{ [12] 31 41 43 51 53 }						 180	4
{ [12] 31 41 43 50 51 53 }					 360	4
{ [12] 31 41 43 51 53 54 }					 360	4
{ [12] 31 41 43 50 51 53 54 }					 360	4
{ [12] 31 40 41 43 50 51 53 }					 180	4
{ [12] 31 40 41 43 50 51 53 54 }				 360	4
{ [12] [45] 31 }						 180	2
{ [12] [45] 31 40 }						 180	2
{ [12] [45] 31 41 }						 180	2
{ [12] [45] 31 40 41 }						 180	2
{ [12] [45] 31 41 43 }						 180	2
{ [12] [45] 31 40 41 43 }					 180	2
{ [12] 30 31 40 41 50 51 }					  60	4
{ [12] 30 31 40 41 50 51 53 }					 360	4
{ [12] 30 31 40 41 50 51 53 54 }				 180	4
{ [12] 30 31 40 41 43 50 51 53 }				 180	4
{ [12] 30 31 40 41 43 50 51 53 54 }				 360	4
{ [12] [45] 30 31 }						 180	2
{ [12] [45] 30 31 40 }						 180	2
{ [12] [45] 30 31 41 }						 180	2
{ [12] [45] 30 31 40 41 }					 180	2
{ [12] [45] 30 31 40 41 43 }					 180	2
{ [12] [34] 51 53 }						  90	2
{ [12] [34] 50 51 53 }						  90	2
{ [12] [34] 30 50 53 }						 180	2
{ [12] [34] 30 50 51 53 }					 180	2
{ [12] [34] 31 51 53 }						 180	2
{ [12] [34] 31 50 51 53 }					 180	2
{ [12] [34] 30 31 50 51 53 }					 180	2
{ [12] [345] }							  60	1
{ [12] [345] 30 }						  60	1
{ [12] [345] 31 }						  60	1
{ [12] [345] 30 31 }						  60	1
{ [12] 10 30 31 40 41 50 51 }					  60	4
{ [12] 10 30 31 40 41 50 51 53 }				 360	4
{ [12] 10 30 31 40 41 50 51 53 54 }				 180	4
{ [12] 10 30 31 40 41 43 50 51 53 }				 180	4
{ [12] 10 30 31 40 41 43 50 51 53 54 }				 360	4
{ [12] [45] 10 30 31 40 }					 180	2
{ [12] [45] 10 30 31 40 41 }					 180	2
{ [12] [45] 10 30 31 40 41 43 }					 180	2
{ [12] [34] 10 30 50 51 53 }					  90	2
{ [12] [34] 10 30 31 50 51 53 }					 180	2
{ [12] [345] 10 }						  60	1
{ [12] [345] 10 30 }						  60	1
{ [12] [345] 10 30 31 }						  60	1
{ [123] 41 51 }							  60	3
{ [123] 41 50 51 }						 120	3
{ [123] 41 51 54 }						 120	3
{ [123] 41 50 51 54 }						 120	3
{ [123] 40 41 50 51 }						  60	3
{ [123] 40 41 50 51 54 }					 120	3
{ [123] [45] 41 }						  60	1
{ [123] [45] 40 41 }						  60	1
{ [123] 10 40 41 50 51 }					  60	3
{ [123] 10 40 41 50 51 54 }					 120	3
{ [123] [45] 10 40 41 }						  60	1
{ [1234] 51 }							  30	2
{ [1234] 50 51 }						  30	2
{ [1234] 10 50 51 }						  30	2
{ [12345] }							   6	1
{ [12345] 10 }							   6	1
{ [01] 20 30 40 50 }						  15	4
{ [01] 20 30 40 50 52 }						 180	4
{ [01] 20 30 40 50 52 53 }					 180	4
{ [01] 20 30 40 50 52 53 54 }					  60	4
{ [01] 20 30 40 42 50 52 }					 180	4
{ [01] 20 30 40 42 50 53 }					 180	4
{ [01] 20 30 40 42 50 52 53 }					 360	4
{ [01] 20 30 40 42 50 52 54 }					 360	4
{ [01] 20 30 40 42 50 52 53 54 }				 360	4
{ [01] 20 30 40 42 43 50 52 53 }				  90	4
{ [01] 20 30 40 42 43 50 52 53 54 }				 180	4
{ [01] [45] 20 30 }						  90	2
{ [01] [45] 20 30 40 }						  90	2
{ [01] [45] 20 30 40 42 }					 180	2
{ [01] [45] 20 30 40 42 43 }					  90	2
{ [01] 20 30 32 40 42 50 52 }					  60	4
{ [01] 20 30 32 40 42 50 52 53 }				 360	4
{ [01] 20 30 32 40 42 50 52 53 54 }				 180	4
{ [01] 20 30 32 40 42 43 50 52 53 }				 180	4
{ [01] 20 30 32 40 42 43 50 52 53 54 }				 360	4
{ [01] [45] 20 30 32 }						 180	2
{ [01] [45] 20 30 32 40 }					 180	2
{ [01] [45] 20 30 32 40 42 }					 180	2
{ [01] [45] 20 30 32 40 42 43 }					 180	2
{ [01] [34] 20 53 }						  90	2
{ [01] [34] 20 50 53 }						 180	2
{ [01] [34] 20 50 52 53 }					 180	2
{ [01] [34] 20 30 50 53 }					 180	2
{ [01] [34] 20 30 50 52 53 }					 180	2
{ [01] [34] 20 30 32 50 52 53 }					 180	2
{ [01] [345] 20 }						  60	1
{ [01] [345] 20 30 }						  60	1
{ [01] [345] 20 30 32 }						  60	1
{ [01] [23] 40 42 50 52 }					  45	2
{ [01] [23] 40 42 50 52 54 }					  90	2
{ [01] [23] [45] }						  15	0
{ [01] [23] [45] 40 }						  90	0
{ [01] [23] [45] 40 42 }					  45	0
{ [01] [23] 20 40 42 50 52 }					  90	2
{ [01] [23] 20 40 42 50 52 54 }					 180	2
{ [01] [23] [45] 20 40 }					  45	0
{ [01] [23] [45] 20 40 42 }					  90	0
{ [01] [234] 52 }						  60	1
{ [01] [234] 50 52 }						  60	1
{ [01] [234] 20 50 52 }						  60	1
{ [01] [2345] }							  15	0
{ [01] [2345] 20 }						  15	0
{ [012] 30 40 50 }						  20	3
{ [012] 30 40 50 53 }						 120	3
{ [012] 30 40 50 53 54 }					  60	3
{ [012] 30 40 43 50 53 }					  60	3
{ [012] 30 40 43 50 53 54 }					 120	3
{ [012] [45] 30 40 }						  60	1
{ [012] [45] 30 40 43 }						  60	1
{ [012] [34] 30 50 53 }						  60	1
{ [012] [345] }							  10	0
{ [012] [345] 30 }						  20	0
{ [0123] 40 50 }						  15	2
{ [0123] 40 50 54 }						  30	2
{ [0123] [45] 40 }						  15	0
{ [01234] 50 }							   6	1
{ [012345] }							   1	0