[Search for users] [Overall Top Noters] [List of all Conferences] [Download this site]

Conference rusure::math

Title:Mathematics at DEC
Moderator:RUSURE::EDP
Created:Mon Feb 03 1986
Last Modified:Fri Jun 06 1997
Last Successful Update:Fri Jun 06 1997
Number of topics:2083
Total number of notes:14613

650.0. "zero split integers" by ESTORE::ROOS () Fri Jan 16 1987 11:59

    
    
    
    Note that 15*7 = 105 and 11*91 = 1001
    
    1.Thus 15 can be "single zero split".  Other than the trivial cases
      of 10, 20, 30, 40, ..., 80, 90, find all other "single zero split"
      2 digit integers.
    
    2. Notice that 11 can be "double zero split" ie 11*91 = 1001.  Find
       all other "double zero split" 2 digit integers.
    
    3. What about "n zero split", n>=3, 2 digit integers?
    
    
T.RTitleUserPersonal
Name
DateLines
650.1looked into mult tables of 1 to 100 from 1 to 100. . .THEBUS::KOSTASWisdom is the child of experience.Fri Jan 16 1987 14:17141
    re. 0
        well,
            looking at the multiplication tables of the numbers from 1 to 100 
        the following single zero and double zero split numbers were found:

        single zero split:

             15 * 7  =  105
             18 * 6  =  108
             45 * 9  =  405

        double zero split:

             11 * 91 =  1001
             15 * 67 =  1005
             18 * 56 =  1008
             22 * 91 =  2002
             33 * 91 =  3003
             44 * 91 =  4004
             45 * 89 =  4005
             55 * 91 =  5005
             66 * 91 =  6006
             77 * 91 =  7007
             88 * 91 =  8008
             99 * 91 =  9009

        Enjoy,

        Kostas G.


        use of calreal was made in the following way:

           $assign junk.out pas$output
           $ calreal
                set up to (100);
                multiplication table of ( 91 );
                exit(1);
           $
           $type junk.out

             91   *   1 =    91
             91   *   2 =   182
             91   *   3 =   273
             91   *   4 =   364
             91   *   5 =   455
             91   *   6 =   546
             91   *   7 =   637
             91   *   8 =   728
             91   *   9 =   819
             91   *  10 =   910
             91   *  11 =  1001
             91   *  12 =  1092
             91   *  13 =  1183
             91   *  14 =  1274
             91   *  15 =  1365
             91   *  16 =  1456
             91   *  17 =  1547
             91   *  18 =  1638
             91   *  19 =  1729
             91   *  20 =  1820
             91   *  21 =  1911
             91   *  22 =  2002
             91   *  23 =  2093
             91   *  24 =  2184
             91   *  25 =  2275
             91   *  26 =  2366
             91   *  27 =  2457
             91   *  28 =  2548
             91   *  29 =  2639
             91   *  30 =  2730
             91   *  31 =  2821
             91   *  32 =  2912
             91   *  33 =  3003
             91   *  34 =  3094
             91   *  35 =  3185
             91   *  36 =  3276
             91   *  37 =  3367
             91   *  38 =  3458
             91   *  39 =  3549
             91   *  40 =  3640
             91   *  41 =  3731
             91   *  42 =  3822
             91   *  43 =  3913
             91   *  44 =  4004
             91   *  45 =  4095
             91   *  46 =  4186
             91   *  47 =  4277
             91   *  48 =  4368
             91   *  49 =  4459
             91   *  50 =  4550
             91   *  51 =  4641
             91   *  52 =  4732
             91   *  53 =  4823
             91   *  54 =  4914
             91   *  55 =  5005
             91   *  56 =  5096
             91   *  57 =  5187
             91   *  58 =  5278
             91   *  59 =  5369
             91   *  60 =  5460
             91   *  61 =  5551
             91   *  62 =  5642
             91   *  63 =  5733
             91   *  64 =  5824
             91   *  65 =  5915
             91   *  66 =  6006
             91   *  67 =  6097
             91   *  68 =  6188
             91   *  69 =  6279
             91   *  70 =  6370
             91   *  71 =  6461
             91   *  72 =  6552
             91   *  73 =  6643
             91   *  74 =  6734
             91   *  75 =  6825
             91   *  76 =  6916
             91   *  77 =  7007
             91   *  78 =  7098
             91   *  79 =  7189
             91   *  80 =  7280
             91   *  81 =  7371
             91   *  82 =  7462
             91   *  83 =  7553
             91   *  84 =  7644
             91   *  85 =  7735
             91   *  86 =  7826
             91   *  87 =  7917
             91   *  88 =  8008
             91   *  89 =  8099
             91   *  90 =  8190
             91   *  91 =  8281
             91   *  92 =  8372
             91   *  93 =  8463
             91   *  94 =  8554
             91   *  95 =  8645
             91   *  96 =  8736
             91   *  97 =  8827
             91   *  98 =  8918
             91   *  99 =  9009
             91   * 100 =  9100
650.2Iterate...MODEL::YARBROUGHFri Jan 16 1987 17:247
>    Note that 15*7 = 105 ...
	105	=    7*15
	1005	=   67*15
	10005	=  667*15
	100005	= 6667*15
	...
	ad infinitum!
650.3More iterationMODEL::YARBROUGHFri Jan 16 1987 17:3312
... and then there's 
	18*6	= 108
	18*56	= 1008
	18*556	= 10008
	...

and
	11*91		= 1001
	11*9091		= 100001
	11*909091	= 10000001
	11*90909091	= 1000000001
	...
650.4Now for some BIG numbers...MODEL::YARBROUGHFri Jan 16 1987 18:4512
Anyone for 4-digit integers? The following result was developed with MAPLE:

	12[k*88 0's]34 is divisible by 1234, for k=0...

The quotient for k=1 is an 88-digit integer beginning with 9 and ending 
with 1. The quotients for larger k are related (k*88)-digit integers, of 
the form
9...09...1
9...09...09...1
etc.

Lynn Yarbrough
650.5More GeneralizingGNERIC::QUAYLEFri Jan 16 1987 19:2553
Here are a few more pairs of numbers including some for N>2 zeros in the 
middle.

45 * 9 = 405
18 * 6 = 108
15 * 7 = 105
74 * 946 = 70004
54 * 926 = 50004
82 * 97561 = 8000002
91 * 989011 = 90000001
84 * 952381 = 80000004
78 * 897436 = 70000008
65 * 923077 = 60000005
63 * 952381 = 60000003
35 * 857143 = 30000005
28 * 714286 = 20000008
26 * 769231 = 20000006
21 * 952381 = 20000001

If we have a combination with N zeros, we can generate pairs with any 
multiple of N zeros as follows.

For any A,B < 10
If (10A+B)*C = A*10^(N+1) + B      		   (A number with  N zeros in
						    the middle)
Then (10A+B) * ((C-1)*10^N+C) = A*10^(2N+1) + B    (A number with 2N zeros in
						    the middle)

Which can be derived as follows.

(10A+B)*((C-1)*10^N+C) = (10A+B)(C*10^N-10^N+C)

		       = AC*10^(N+1)-A*10^(N+1)+10AC+BC*10^N-B*10^N+BC

		       = AC*10^(N+1)+BC*10^N-B*10^N-A*10^(N+1)+10AC+BC

		       = ((10A+B)*C)*10^N-B*10^N-A*10^(N+1)+(10A+B)*C

		       = (A*10^(N+1)+B)*10^N-B*10^N-A*10^(N+1)+A*10^(N+1)+B

		       = A*10^(2N+1)+B*10^N-B*10^N-A*10^(N+1)+A*10^(N+1)+B

		       = A*10^(2N+1)+B

For example, since 74 * 946 = 70004,
we also know that  74 * 945946 = 70000004
             and   74 * 945945946 = 70000000004
             and   74 * 945945945946 = 70000000000004, etc.

Also, I believe it is true that if (10*A+B)*C = A*10^(N+1)+B is true for 
some A,B,C, and B is even, there exists a D such that (10*A+B)*D/2 will 
also have N zeros between it first and last digits, but I haven't proved 
that yet.                                                       
650.6CLT::GILBERTeager like a childSat Jan 17 1987 19:2931
    Almost any number can be zero-split.

    Given A*10^w+B, let's try to find k > 0 such that

	A*10^w + B | A*10^(w+k) + B,  where '|' is read 'divides'.

    If we have such a k, then

	A*10^w + B | A*10^(w+k) + B - A*10^w - B
	A*10^w + B | A*10^w*(10^k-1)
    
    Now, for any integer n, gcd(n,10) = 1 iff there is a k > 0 such that
    n | 10^k-1.  Let r(n) be the smallest such k > 0 -- it is simply the
    number of repeating digits in the decimal expansion of 1/n.  The set
    of k satisfying n | 10^k-1 is simply the set of all multiples of r(n).

    So, 
	A*10^w + B | A*10^(w+k) + B, for some k > 0 if and only if
	gcd( (A*10^w+B) / gcd(a*10^w+B,A*10^w), 10 ) = 1.

    Given that there is a solution for k, then the set of k satisfying the
    equation are all multiples of r( (A*10^w+B) / gcd(A*10^w+B,A*10^w) ).


    Note that if we define gcd(0,m) = m, the above can be better written as:

	A*10^w + B | A*10^(w+k) + B, for some k > 0 if and only if
	gcd( (A*10^w+B) / gcd(B,A*10^w), 10 ) = 1.

    For example, we see that 25 can't be split (between the 2 and the 5),
    and that 74 can be split using k = r(37) = 3.